Measure Theory with Ergodic Horizons Lecture 17

Pape let
$$f,g \in L^{\epsilon}(X, p)$$
.
(a) If $f \leq g$ then $\int f dp \leq \int g dp$.
(b) $\int a \cdot f dp = a \cdot \int f dp$ for all $a \in (0, \infty)$.
(c) $\int f dp = 0$ if and only if $f = 0$ a.e.
Proof. (c). $c = .$ If $f = 0$ a.e. then every non-negative simple function $s \leq f$ also has to
be 0 a.e. , so $\int s dp = 0$, hence $\int f dp = 0$.
 \Longrightarrow Since $X_0 = \int x \in X: f(x) > 0 \int = \bigcup_{n=1}^{\infty} X_n$, where $X_n := \{x \in X: f(x) > t\},$
 $c \in \mathbb{N}$ subadditivity implies but if $f(x_0) > 0$, then $p(X_n) > 0$ for some $n \geq 1$.
But then the simple function $S := \frac{1}{n} \cdot \frac{1}{1 \times n} \leq f$ hence $\int f dp \geq \int s dp = \frac{1}{n} \cdot p(X_n) > 0$.

Next
$$\forall \Sigma : D$$
, $\lim_{n \to \infty} \int f_n d\mu \ge \int (1-\Sigma) s dy$ for some $u \in [N.$
To Nois end, note that for end $x \in X = 3 u \in [N]$ such that $f_n(K) \ge (1-2) \cdot s$, thus
 $X = \bigcup X_n$, where $X_u := \{x \in X : f_n(K) > (1-\Sigma) \cdot s\}$. By part (a) above,
 $n \in [N]$
 $\int f_n d\mu \ge \int f_n d\mu \ge \int (1-\Sigma) \cdot s d\mu = \int_{K \in S} (X_n)$
But $f_{(n+1)S} [X_n] \nearrow f_{(n-1)S} [X] = \int ((-S) \cdot s d\mu$ by the wood-onicity of the measure $f_{(n+1)S}$.
so $\lim_{n \to \infty} (f_n d\mu \ge \int (1-S) \cdot s d\mu$.
 $\int f_n d\mu \ge \int (1-S) \cdot s d\mu$.
 $\int f_n d\mu \ge \int (1-S) \cdot s d\mu$.
 $\int \int f_n d\mu \ge \int (1-S) \cdot s d\mu$.
 $\int \int f_n d\mu \ge \int (1-S) \cdot s d\mu$.
 $\int \int f_n d\mu \ge \int (1-S) \cdot s d\mu$.
 $\int \int f_n d\mu \ge \int (1-S) \cdot s d\mu$.
 $\int \int f_n d\mu \ge \int (1-S) \cdot s d\mu$.
 $\int \int f_n d\mu \ge \int f_n d\mu + \int g d\mu$.
 $\int \int f_n d\mu \ge \int f_n d\mu + \int f_n d\mu +$

$$\int_{\mathcal{U}\in\{N\}} f_n d\mu = \lim_{N \to \infty} \int_{N=N} f_n d\mu = \lim_{N \to \infty} \sum_{n \in N} \int_{N=0}^{\infty} \int_{n \in N} f_n d\mu = \sum_{n \in N} \int_{n \infty} \int_{n$$

$$f_{f}(B) := \int_{B} f \, d\mu := \int f \cdot \mathbf{1}_{B} \, d\mu$$
by ends processive ble if $B \leq X$.
Read processive ble if $B \leq X$.
Read Sime obviously $p_{f}(B) = 0$, we only used to show dot addictivity. Lef
$$B = 11 B \text{ is a pertition of a processivable of B into processive ble
and $B = 0$. We need to show $p_{f}(B) = \sum_{n \in V} p_{f}(B_{n})$. But
$$\sum_{n \in V} y_{f}(B_{n}) - \sum_{n \in V} \int f \cdot \mathbf{1}_{B_{n}} \, d\mu = \int \sum_{n \in V} f \cdot \mathbf{1}_{B_$$$$

Example (d deiet inequality in Fatou's lema). Let
$$(X, p) := (R, \lambda)$$
.
(a) Let for := $\int_{(r_1, r_1)}$, have for $\rightarrow 0$ pointwise, but for $d\lambda = 1$ for all used).
(a) Let for := $\int_{(r_1, r_1)}$, have for $\rightarrow 0$ pointwise, but for $d\lambda = \infty$ for all now.
(a) Let for := $\int_{(r_1, r_2)}$, then for $\rightarrow 0$ pointwise, but for $d\lambda = n$ for all now.
(a) Let for := $\int_{(r_1, r_2)}$, then for $\rightarrow 0$ pointwise, but for $d\lambda = n$ for all now.
(a) Let for := $\int_{(r_1, r_2)}$, then for $\rightarrow 0$ pointwise, but for $d\lambda = n$ for all now.
(b) Let for := $n \int_{(r_1, r_2)}$, much for a pointwise, here for $d\lambda = n$ for all now.
(b) Let for := $n \int_{(r_1, r_2)}$, much for d pointwise, here for $d\lambda = n$ for all $n \in \mathbb{N}$.
(b) Let for := $n \int_{(r_1, r_2)}$, much for d bet $\int_{-\infty}^{\infty} d\lambda = n^2 + n \to \infty$.
(c) Let for := $n^2 \int_{(r_1, r_2)}^{\infty}$, much for d bet $\int_{-\infty}^{\infty} d\lambda = n^2 + n \to \infty$.
(d) Let for := $n^2 \int_{(r_1, r_2)}^{\infty}$, much for d bet $\int_{-\infty}^{\infty} d\lambda = n^2 + n \to \infty$.
Def A promeosure close for for for $f: X \to \mathbb{R}$ is called prively colle if $\int_{-\infty}^{\infty} d\mu = 0$.
The integral of each for $f: X \to \mathbb{R}$ is called prively colle if $\int_{-\infty}^{\infty} d\mu = 0$.
The integral of each for f defined to be for a prive for h for h .
Note that $L'(X,p)$ is a vector space and we matrix it into a privelow model.

Discretion. II IIs is indeed a pseudo-norm on
$$L'(X, \mu)$$
, i.e. for all $f, g \in L'(X, \mu)$:
(i) $\|f\|_{1, z} = 0$ and $\|f\|_{1, z} = 0 < z \le f = 0$ a.e. (this a.e. is the it's not a norm).
(ii) $\|df\|_{1, z} = |d| \cdot \|f\|_{1, z}$ for all $d \in \mathbb{R}$.
(iii) Triangle inequality: $\|feg\|_{1, z} \le \|f\|_{1, z} + \|g\|_{1, z}$.
Proof. For (iii), note that $\|feg\|_{1, z} = \int |feg| d\mu \in \int (|f| + |g|) d\mu = \int |f| d\mu + \int |g| d\mu = \|f\|_{1, z} \|g\|_{1, z}$.
This pseudo-norm also defines a metric on $L'(X, \mu)$ by
 $d_{1, z}(f_{1, z}) := \|f-g\|_{1, z}$.
making $L'(X, \mu)$ indo a pseudo-metric space. Thus, if makes sense ho say
that a securice $(f_{1, z}) \in L'(X, \mu)$ converges in the yseudo-norm $\|f_{1, z}\|_{1, z}$ to be